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† CMMI, Université Libre de Bruxelles, Gosselies, Belgium

ABSTRACT

Digital pathology produces a lot of images. For machine
learning applications, these images need to be annotated,
which can be complex and time consuming. Therefore, out-
side of a few benchmark datasets, real-world applications
often rely on data with scarce or unreliable annotations. In
this paper, we quantitatively analyze how different types of
perturbations influence the results of a typical deep learn-
ing algorithm by artificially weakening the annotations of
a benchmark biomedical dataset. We use classical machine
learning paradigms (semi-supervised, noisy and weak learn-
ing) adapted to deep learning to try to counteract those effects,
and analyze the effectiveness of these methods in addressing
different types of weakness.

Index Terms— Machine learning; Histopathology imag-
ing

1. INTRODUCTION

Digital pathology produces very large images with a large
amount of objects of interests of all scales and shapes. Most
machine learning algorithms, particularly Deep Learning
techniques, rely on large amounts of supervised data to find
correct solutions. These data are hard to get, focusing most
of the published work on a small set of good datasets used for
challenges and benchmarks. It is however hard to judge how
well these methods can perform on real-world, less accurate
data. Being able to use imperfect data and still produce good
results is an important challenge for DL. Imperfect data can
take many different forms. In this work we will focus on
errors in the annotations, while errors in image acquisition or
other data corruption are not considered. We first explore the
different ways annotations can be described as “imperfect”,
using classical ML paradigms. We measure how different
types of error affect the results of a DL algorithm. We then
implement methods adapted from those paradigms to reduce
the errors and evaluate their performance.

2. RELATED WORKS

The study of the different imperfections of an annotated
dataset has taken different forms in Machine Learning.

Semi-supervised learning (SSL) describes the case where
a large part of the dataset lacks labels, but the available an-
notations are correct. Semi-supervised methods will typically
use the unlabeled examples to estimate the shape of the data
distribution, while the labeled data is used to separate the
classes within that distribution [1]. The main assumptions of
SSL are local-consistency (similar samples share the same la-
bel) and exotic-inconsistency (non-similar samples have dif-
ferent labels) [2]. Semi-supervised versions of classical ML
algorithms have been developed, such as SVM [3] or Random
Forests [4].

Weak learning (WL) is a relatively wide term which is
generally linked with the idea that the desired output of the
system is more precise than the available supervision. A typ-
ical example in image analysis is when image-level labels are
provided, but the desired output is pixel-level segmentation.
The classical framework for WL is Multiple Instance Learn-
ing (MIL) [5, 6]. In MIL, the instances (pixels) are unla-
beled, but grouped per labeld bags (images). DL methods ad-
dress this problem using deep convolutional neural networks
(DCNN). In these DCNN the feature maps from different lev-
els can be combined to provide segmentation, with a pooling
method used to generate one single score per class at the net-
work output for learning [7, 8].

Noisy datasets (ND) are cases where the supervision ex-
ists, but contains errors. In the present paper, we focus on
labeling errors, i.e. the class allocated to the training exam-
ple [9]. This label noise can be characterized by the noise
transition matrix, which describes the probability for a given
label to be mistaken with another [10]. Methods to use noisy
data will be dependent on the transition matrix, and one such
method will be described in section 3.2.

Typical digital pathology problems can have characteris-
tics from all those concepts. It is often relatively easy to get
large, unsupervised datasets (for instance from whole-slide
imaging), with only partial supervision. To get more super-
vision, the annotations may be done more quickly in a less
accurate manner by a non-expert, and will therefore be rough



and imprecise. These datasets can be also seen as including
noisy labels, with a highly asymmetrical noise transition ma-
trix. For instance, if a whole slide is annotated for mitoses, or
glands, the annotated objects are generally correct (although
possibly rough), but a number of them may have been missed.

3. MATERIALS AND METHODS

While DL algorithms are developed to deal with real-world
semi-supervised, noisy, and/or weak (SNOW) datasets, it is
very difficult to evaluate them and compare their result quan-
titatively, because it is difficult or impossible to have a suf-
ficiently large “gold standard” test set corresponding to the
actual application. We thus use the GlaS challenge contest
dataset [11] as a starting point to study how the performance
of a DL algorithm is affected by different types of annota-
tion weakness, and to identify the best approaches to mitigate
these effects. The GlaS dataset consists in images taken from
H&E-stained slides of colorectal tissue samples, including tu-
mors, and where glands are annotated. There are 85 images
in the training set and 80 in the test set. The supervision pro-
vided is a pixel-precise segmentation of the glands. Both sets
contain around 750 glands, taking up around 50% of the total
surface of the images.

3.1. Dataset corruption

The weaknesses that we want to include in the dataset attempt
to recreate the kinds of errors found in usual digital pathology
problems. Those errors are of two main types: missing anno-
tations and imprecise annotations.

To simulate missing annotations, a proportion pN of the
glands is entirely removed in every training image, making
the annotations noisy. We test different values for pN to de-
termine how much the level of label noise affects the segmen-
tation results.

Imprecise annotations are modelled by deforming the ob-
jects in two different ways: size difference and shape approx-
imation (polygonal or bounding box). Size difference simu-
lates how people will naturally make an “outer contour” or
an “inner contour” when annotating an image. It is done by
performing morphological erosions and dilations using a disk
kernel with a radius drawn from a normal distribution with
standard deviation sK . Polygonal approximation relates to
how quick annotations will be done with key points along the
contour rather than following a pixel-precise “freehand” bor-
der, and produced by only keeping a fraction fC of the bor-
der points to produce a simplified contour. Bounding boxes
(BB) are another common way of producing quick annota-
tions. Different corruption types are shown in Figure 1.

Fig. 1. (a) Full, (b) Noisy, (c) Noisy+HD (high deformation
using sK = 20 and fC = 80), (d) Noisy+BB annotations.

3.2. Baseline network and modifications

Our baseline network is a DCNN using residual units [12].
All convolutional layers use the Leaky ReLU activation func-
tion. A Softmax is applied after the last layer to get the
final probability map of the segmentation. The network is
trained using the cross-entropy cost function. This is a stan-
dard DCNN approach to solving a segmentation problem and
serves as a reference to limit the variability. We modify this
network and/or its training using different strategies related to
the semi-supervised, noisy, and weak paradigms, as presented
in Figure 2.

Positive examples. Using the baseline network, but
trained only on the positive (which are mostly correct) ex-
amples, defined as patches which contain at least 80 pixels
belonging to the “gland” class.

Semi-supervised (SS). An auto-encoder is trained on the
full dataset without supervision (using the mean square error
reconstruction cost). The weights in the first three residual
units (R1 to R3 in Figure 2) are then used as the initialization
for the training on the supervised set.

Weak. When the annotations are very imprecise, it can
make more sense to use an image-level label instead of the full
segmentation, and to trust the network to find which pixels
were predictive of the target class. This is done by adding a
global pooling layer after the segmentation.

SoftWeak (SW). This approach offers a compromise by
using pixel-level annotations, possibly imprecise, combined
with the image-level labels, both in the cost function and in
the output prediction.

Noisy. The label noise introduced in the dataset is highly
asymmetrical, in that it is much more likely that a “positive”
example is mislabeled as “negative” (i.e. an object of interest
is not annotated) than the opposite (i.e. a background region is
mistakenly annotated). We therefore actually have only “pos-
itive and unannotated labels” [13]. The proposed solution is
to treat unlabeled examples as both a positive and a negative
example during training, either by duplicating the sample or
by randomly choosing its label each time the sample is pre-



(Semi-Supervised)

(Weak)

(SoftWeak)

Fig. 2. Baseline, weak and auto-encoder networks. The weak networks are trained on the global average, while the baseline
network uses the full segmentation and the SoftWeak networks both. Each residual unit has three convolutional layers. R1 and
R3 have a max-pooling layer. Upsampling layers use a transposed convolution. Inputs are 256x256 pixels images.

sented to the network.
We will also test different combinations of these methods.

4. RESULTS

The metric used to compare the different methods and the ef-
fects of the weaknesses is the standard per-pixel F1 Score,
defined as: F1 = 2×Precision×Recall

Precision+Recall . We do not use the per-
object score introduced in the GlaS contest because it is not
useful for the more general comparison that interests us here.

As the dataset is fairly small, basic data augmentation
is done using mirroring, illumination change and random
noise in the RGB levels. Training is done on 256x256 pixels
patches randomly taken from the training set images. For test-
ing, we compute the prediction on the test image by tiling the
patches with some overlap. The final value for a pixel is given
by the maximum prediction from all patches which included
this pixel. No post-processing is performed on the network
predictions. The F1 scores are computed on all images of the
GlaS test sets, using the full annotations. Prediction time is
around 16ms per tile on a NVIDIA Titan X GPU.

4.1. Effects of noise and weaknesses

Figure 3 shows the effects of noise levels on the baseline net-
work. Residual DCNNs show robustness to a limited amount
of noise, but a sharp drop occurs around pN = 0.5. We
also observe that large deformations (HD set with sK = 20
and fC = 80) only decrease the performance slightly (F1 =
0.795 compared to 0.841 on the full dataset) and that using
only the bounding boxes has more impact (F1 = 0.724).
Finally, weakness combinations result in poor performances
(HD+Noise: F1 = 0.212, BB+Noise: F1 = 0.511).

4.2. Results of the proposed methods

All different and combined strategies are compared to the
baseline network on the Noisy (pN = 0.5, where the per-
formance drop occurs), BB, Noisy+BB and Noisy+HD sets.
To objectively determine the best methods, we performed the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

pN

F
1

Effects of noise levels

Baseline
Semi-supervised

SS+

Fig. 3. Noise level effects on the baseline, semi-supervised
(SS), and SS+ (i.e. SS fine-tuned only on positive examples)
networks

Friedman test with post-hoc Nemenyi pair-wise tests on the
test image scores. A summary of the results is shown in Ta-
ble 1. Per dataset, the results in bold are not significantly
different from the best one. For each data set, we characterize
each method by the difference between the number of signif-
icantly worse methods and the number of significantly better
method. On this basis, we propose a new statistical score for
each method, which is the sum over all datasets of these dif-
ferences. The baseline network performs significantly worse
than the other networks on the SNOW datasets. Overall, SS+
SoftWeak and Only Positive networks have the best perfor-
mance, with SS+ not far behind. On the BB set Noisy Soft-
Weak and SS perform the best, but are unsatisfactory on the
other sets.

5. DISCUSSION AND FUTURE WORK

Using artificial yet realistic imperfections in a dataset, we
have quantified the effects of different annotation errors on the
performance of a standard DL algorithm. Our results show
that simple DCNN networks are robust to a certain amount of
noise, but show an abrupt decrease in performances around



Table 1. F1 and statistical scores of the proposed methods on
noisy (pN = 0.5), weak (BB) and combined sets.

F1 (mean on all test images) Stat.
Network Noisy BB N+BB N+HD Score
Baseline 0.231 0.724 0.511 0.212 -21
Only positive 0.768 0.730 0.697 0.660 14
SS 0.467 0.756 0.522 0.207 -8
SS+ 0.729 0.740 0.730 0.428 12
Weak 0.659 0.211 0.647 0.648 -8
SoftWeak 0.724 0.741 0.683 0.018 -4
Noisy SW 0.547 0.756 0.656 0.252 -1
SS+ SW 0.735 0.737 0.711 0.671 15
SS Noisy SW 0.592 0.738 0.613 0.364 0

Fig. 4. Segmentation results on a test image for (left) the base-
line network and (right) the semi-supervised positive (SS+)
network, both trained on the N+HD dataset.

the 50% noise mark. Deformations and imprecisions in the
annotations also degrade the results significantly. Strategies
adapted from classical machine learning can partially recover
from this degradation. Our results suggest that it is often bet-
ter to use a smaller dataset with few annotations errors (”only
positive” strategy), possibly combined with unsupervised pre-
training on a larger set (SS+ and SS+ SW strategy). Further
work will study whether these results are confirmed on other
weakened datasets, possibly with other DCNN networks, and
will apply those insights to real-world SNOW datasets. We
suspect that a network specialized in learning object edges
(such as the winner of the GlaS contest [11]) will be particu-
larly affected by annotation distortions such as BB and HD.
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