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Abstract

In digital pathology, image segmentation algorithms are usually ranked on clean, benchmark
datasets. However, annotations in digital pathology are hard, time-consuming and by nature imper-
fect. We expand on the SNOW (Semi-, Noisy and/or Weak) supervision concept introduced in an
earlier work to characterize such data supervision imperfections. We analyse the effects of SNOW
supervision on typical DCNNs, and explore learning strategies to counteract those effects. We apply
those lessons to the real-world task of artefact detection in whole-slide imaging. Our results show
that SNOW supervision has an important impact on the performances of DCNNs and that relying on
benchmarks and challenge datasets may not always be relevant for assessing algorithm performance.
We show that a learning strategy adapted to SNOW supervision, such as “Generative Annotations”,
can greatly improve the results of DCNNs on real-world datasets.

1 Introduction
In the past decade, Whole-Slide Imaging (WSI) has become an important tool in pathology, for diagnostic,
research and education [1]. The rise of digital and computational pathology is closely associated with
advances in machine learning, as improvements in data storage capacity and computing power have
made both Deep Learning (DL) techniques and WSI processing practicable. DL has become the default
solution for solving computer vision challenges, including those in the field of pathology [2].

DL algorithms for image segmentation in digital pathology are generally evaluated through challenges
on datasets produced specifically for the competition and often conducted at major biomedical imag-
ing conferences such as MICCAI or ISBI [3]. Those datasets are generally considered “clean”, using a
consensus of annotations provided by multiple experts. Producing those datasets, however, is extremely
costly and time-consuming, and the datasets available for real-world applications are often not of the
same quality [4].

Being able to use imperfect annotations while producing good results is therefore an important
challenge for the future of DL in digital pathology. In this work, we focus on annotation problems
typically encountered in digital pathology in segmentation tasks that consist in distinguishing a single
type of object in a slide image, such as cell nuclei [5], leukocytes [6], glomeruli [7], glands [8] or tumour
epithelium [9]. We characterize annotation imperfections using the Semi-Supervised, Noisy and/or Weak
(SNOW) concept introduced previously [10] and detailed in the following section. We analyse how these
types of imperfection can affect DL algorithms in digital pathology. Then, we explore the capabilities of
different learning strategies to mitigate the negative effects of SNOW supervision. For both tasks, we use
challenge datasets, considered as perfectly supervised, in which we introduce corruptions of annotations
to modulate the quality level of the annotations in a controlled and realistic way, as illustrated in
Figure 1. This experimental framework enables us to quantitatively analyse the effects of supervision
imperfections and to identify which learning strategy can best counteract them. Our results essentially
show that noisy labels due to omitted annotations (Figure 1(c)) have the strongest impact, and that a
strategy based on an annotation generator have good potential to provide an effective solution. We then
successfuly apply our findings to the real-world task of detecting artefacts in whole-slide images. Finally,
we conclude with guidelines to help identify different types of annotation imperfections and appropriate
learning strategies to counteract their effects on DL.
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Figure 1: Examples of corrupted annotations generated on the GlaS dataset to simulate different levels
of supervision and annotation effort. (a) Original image, (b) Original annotations, (c) Low contour
deformations, (d) High contour deformations, (e) 50% Noise (i.e., 50% of the objects of interest are
labelled as background), (f) 50% noise + Bounding Boxes.

2 Material and methods

2.1 Datasets
Several datasets are used in this work. First, two clean datasets are used to introduce SNOW supervision
and to evaluate their effects in a controlled environment, and then to test different learning strategies
to address these effects. A third real-world dataset, targeting artefact detection in whole slides images
(WSIs) with supervision imperfections, is then used as a case study and as a test of the most promising
strategies. In this section, we present the three datasets and their characteristics. We explain how
the annotations are corrupted to simulate the effects of SNOW supervision. We then present the deep
convolutional neural networks which are used as baselines. Finally, we describe the learning strategies
that are implemented to modify the baseline networks and/or the data pipeline for each of the datasets.

2.1.1 Publicly available and clean datasets

Data Tissue Stain Training sam-
ples

Test samples Annotations

GlaS [8] Colorectal
(normal and
cancer)

HE 85 images (around
700x500 pixels)
from 16 slides

80 images (same
size) from 16 slides

Gland segmenta-
tion

Epithelium
[11]

Breast cancer HE 35 images
(1000x1000 pixels)

7 images (same
size)

Tumor segmenta-
tion

Table 1: Description of publicly available datasets. The annotations are pixel-precise of a high quality
and cover the entire dataset.

Table 1 describes the two datasets that are used to introduce annotation imperfections and evaluate
their effects in a controlled environment.

It should be noted that the GlaS dataset has a very high density of objects of interest (glands), with
50% of the pixels in the training set being annotated as positive. To be processed by the networks,
patches are extracted from the images as detailed in section 2.4.1. Around 95% of extracted patches
contain at least some part of a gland (“positive patch”). Comparatively, the Epithelium set has a slightly
lower density of positive pixels (33%) with around 87% of positive patches extracted from the images.
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Real-world artefact dataset

Our own artefact segmentation dataset is used as a case study of real-world SNOW supervision. It
contains 22 WSIs coming from 3 tissue blocks, with H&E or IHC staining, as detailed in Table 2.

Block Slide staining Tissue type
Block A (20 slides) 10 H&E + 10 IHC (anti-pan-cytokeratin) Colorectal cancer
Block B (1 slide) IHC (anti-pan-cytokeratin) Gastroesophageal junction (dys-

plasic) lesion
Block C (1 slide) IHC (anti-NR2F2) Head and neck carcinoma

Table 2: Descrition of the real-world artefact dataset with SNOW supervision.

Artefacts in WSIs are very common and heterogeneous in nature. They can be produced at any stage
of the digital pathology pipeline, from the extraction of the sample to the acquisition of the image. Some
of the most common are tissue folds and tears, ink artefacts, pen markings, blur, etc. [12]. Part of the
difficulty of using a machine learning approach is that this heterogeneity makes it hard to annotate the
images properly. Our annotations are therefore inevitably imperfect. Objects of interest were annotated
quickly with imprecise borders, and many artefacts, especially those of small sizes, were left unannotated
(see Figure 2). A total of 918 distinct artefacts are annotated in the training set, with a much lower
density of positive pixels (2%) and positive patches (12%) than in the two previous datasets.

In addition to our own dataset, we select four slides from The Cancer Genome Atlas (TCGA)
dataset [13], which include different types of artefacts [14]. We use these slides to test the general-
ization capabilities of our best methods.

Figure 2: Annotated slide from the artefact training set, with imprecise delineation and many unlabelled
artefacts, including blurry regions and smaller tears.

2.2 Corruptions of the annotations
For each dataset with clean annotations mentioned in Table 1, we introduce random corruptions in
the training set annotations mimicking imperfections commonly encountered in real-world datasets (see
below). The test set with correct annotations is kept to evaluate the impact of these imperfections on
DL performance.

Because creating pixel-perfect annotations is very time-consuming, experts may choose to annotate
faster by drawing simplified outlines. They may also have a tendency to follow “inner contours” (under-
estimating the area of the object) or “outer contours” (overestimating the area). We generate deformed
dataset annotations in a two-step process. First, the annotated objects are eroded or dilated by a disk
whose radius is randomly drawn from a normal zero-centered distribution, a negative radius being in-
terpreted as erosion and a positive radius as dilation. The standard deviation (σR) of this distribution
enables us to adjust the level of deformation. The second step consists in simplifying the contour of each
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object, as follows. The contour pixels are identified and only a fraction of them, determined by a simpli-
fication factor f , are kept to create a polygonal approximation of the original contour. We introduce low
deformations using σR = 5px and f = 10, medium deformations using σR = 10px and f = 40, and high
deformations using σR = 20px and f = 80 (see Figure 1(c-d)). Compared to the original annotations,
“low deformations” may represent differences in annotation that can be observed between two experts
when the object boundaries are not obvious to delineate.

In addition to deformed annotations, we also simulate the case where the expert chooses a faster
supervision process using only bounding boxes to identify objects of interest. In this case, we replace
each annotation by the smallest bounding box which includes the entire object.

Experts who annotate a large dataset may miss objects of interest. We create what we call in this
paper “noisy datasets” by randomly removing the annotations of a certain percentage of objects. A
corrupted dataset with “50% of noise” is therefore defined as a dataset where 50% of the objects of
interest are relabelled as background (see Figure 1(e)). As there is some variation in the size of the
objects, we verified that the percentage of pixels removed from the annotations ranged linearly with the
percentage of omitted objects, as detailed in the supplementary materials.

Different imperfections are also combined: noise with deformations and noise with bounding boxes
(see Figure 1(f)), resulting in different “SNOW datasets” which are used in section 4.2.

2.3 Baseline networks and learning strategies
2.3.1 Baseline networks

Three different networks are used in this work. First, a short network using residual units similar to
those introduced by ResNet [15], labelled ShortRes. As the winner of the 2015 ImageNet challenge,
ResNet has become a very popular network for various computer vision, biomedical and other tasks [16].
Residual networks include “short-skip” connections which allow the gradients to flow more directly to
the early layers of the network during backpropagation. The second network used is U-Net [17], which is
among the most popular architecture in medical image analysis [16]. It includes dropout layers [18] and
“long-skip” connections between the downsampling and upsampling layers. The final network, which we
call the Perfectly Adequate Network (PAN), combines both short and long skip connections. It is smaller
than U-Net, and also combines the outputs from different layers to produce the final segmentation.

A schematic representation of the ShortRes and PAN networks is presented in Figure 3. A detailed
description of these baseline networks and any variations resulting from the learning strategies detailed
in section 2.3.2 is presented in the supplementary materials. All network implementations are done using
the TensorFlow library. The number of parameters for the networks in their baseline version is around
500k (ShortRes), 10M (PAN) and 30M (U-Net). These 3 architectures allow us to study networks with
a priori different learning capacities and to measure their respective resistance to different types and/or
levels of supervision defects.

Figure 3: Baseline architectures of the ShortRes (left) and PAN (right) networks. All convolutions and
transposed convolutions use a Leaky ReLU [19] activation function. Dimensions along the feature maps
are shown for 256x256 pixels input patches and are adapted to other patch sizes.
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2.3.2 Learning strategies

Data Augmentation (always used). In all our experiments, the same basic data augmentation scheme is
applied to the training sets that are then used by all networks, left as is (baseline) or combined with one
of the learning strategies described below. We modify each mini-batch on-the-fly before presenting it to
the network, using the following methods:

• Random horizontal and/or vertical flip.

• Random uniform noise on each of the three RGB channels (maximum value is 10% of maximum
image intensity).

• Random global illumination change on each of the three RGB channels (maximum value of ± 5%
of maximum image intensity).

Only Positive. In this approach, only patches which contain at least part of an object of interest are
kept in the training set. Practically, we first compute the bounding boxes of all objects annotated in the
training set. During training, we sample patches which have an intersection with these boxes, extended
by a margin of 20 pixels on all sides.

Semi-supervised learning. A two-step approach is used for the semi-supervised strategy and is based
on the fact that all our networks follow a classic encoder-decoder architecture.

First, an auto-encoder is trained on the entire dataset by replacing the original decoder (with a
segmentation output) by a shorter decoder with a reconstruction output, as detailed in the supplementary
materials. The Mean Square Error loss function between the network output and the input image is used
to train the auto-encoder, with an L1 regularization loss on the network weights to encourage sparsity.

The second step consists of resetting the weights of the decoder part of the network, and then training
the whole network on the supervised dataset. The encoder part of the network is therefore first trained
to detect features as an auto-encoder, and then fine-tuned on the segmentation task, while the decoder
of the final network is trained only for segmentation. In the experiments on the SNOW datasets reported
below, we test two variants of the semi-supervised strategy depending on the supervised data on which
the network is fine-tuned: either the full supervised (and corrupted) dataset or only the data used by
the “Only Positive” strategy described above.

Generated Annotations. The “Only Positive” strategy may tend to overestimate the likelihood of
the objects of interest, especially in cases where they have a fairly low prior (such as in our artefact
dataset). We propose a slightly different approach based on a two-step method detailed as follows. First,
we train an “Only Positive” network (i.e. using the “Only Positive” strategy) and use it as an annotation
generator to reinforce the learning of the final network, which will be trained on the whole dataset in the
second step. In this second step, if there are annotations in the image, the final network refers to them
as supervision. If there are no annotations, it refers to either this lack of annotation or the output of
the annotation generator as supervision. The probability of each possibility should depend on the object
prior.

This strategy can be seen as a version of semi-supervised learning because the regions without an-
notations are sometimes treated as “unsupervised” rather than with a “background” label. But it is also
based on label noise estimation. The assumption that positive regions are more likely to have correct
annotations results in a highly asymmetric noise matrix, with P (Ỹ = 1|Y = 0) ≫ P (Ỹ = 0|Y = 1) where
Ỹ is the true class and Y the class provided by the imperfect supervision. The Generated Annotations
strategy includes this information by treating positive annotations as correct for training and negative
annotations as uncertain.

Label augmentation. Knowing that labels could be imperfect, especially around the borders, we
create slightly modified versions of the supervision via morphological erosion or dilatation (with a 5
pixels radius disk) of the objects of interest that are randomly presented during learning. Following a
purpose similar to that of classical data augmentation, this strategy aims at making networks robust to
annotation modifications.

Patch-level annotation strategies. As mentioned above, typical weak strategies rely on patch-level
annotations. However, such strategies are not appropriate for the datasets described in Table 1 because
these sets include very few examples of negative patches (5% for GlaS and 13% for Epithelium). This
means that with original or noiseless datasets, “weak” networks would see almost only positive examples,
whereas with noisy data sets, they would see either correct positive examples or incorrect negative
examples. In either case, they will not be able to learn. Therefore, we will not use patch-level strategies
in the present work.
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2.4 Evaluation methods
2.4.1 Evaluation of the GlaS and Epithelium datasets

The networks are trained with patches randomly drawn from the training set images. The patch size is
determined for each dataset by preliminary testing on the baseline network, with the goal of finding the
smallest possible patch size on which the network can learn. 256x256 pixels patches were selected for
the GlaS dataset and 128x128 pixels patches for the Epithelium dataset. To evaluate the results on the
test set, images are split in regular overlapping tiles, with 50% overlap between two successive tiles. For
each tile, the networks produce a probability map. As most pixels (except those close to the borders) are
seen as part of multiple tiles, the maximum probability value for the “positive” class is assigned as the
final output. A mask is then produced using a 0.5 threshold applied to this final output. It should be
noted that contrary to what is usual in image segmentation, no further post-processing is applied on the
results. This aims to avoid contaminating the experiences by external factors but with the consequence
of somewhat penalizing our baseline networks compared to what is reported in the literature.

The standard per-pixel F1-score is used as a general purpose metric for both publicly available
datasets and their corrupted versions, as the objective of this experiment is not to solve a particular
digital pathology task, but to compare the effects of the learning strategies on segmentation accuracy.
The per-pixel F1-score is computed for each image of the test set. To determine significant differences
between the strategies, in terms of performance achieved with a given training set, the F1-scores obtained
on the same test image are compared by means of the Friedman test and the Nemenyi post-hoc test.

On the GlaS dataset, a “statistical score” is also computed to highlight the actual differences in
performance between the tested strategies. For each corrupted dataset and for each pairwise comparison,
if the difference between the two strategies is judged significant by the post-hoc test (p < 0.05), a positive
point is assigned to the best learning strategy and a negative point to the other. The statistical score
is computed by summing those points (on the corrupted datasets only) for each learning strategy. The
best learning strategies so determined are then applied on the Epithelium dataset.

2.4.2 Evaluation of the artefact dataset

Eighteen slides (9 H&E, 9 IHC, all from Block A) are used as a training set. The test set is composed
of tiles of varying dimensions (between around 400x400 and around 800x800 pixels), extracted from two
additional slides from Block A and from the slide from Block B (7 tiles per slide for a total of 21 tiles).
Eight of the 21 test tiles have no or very few artefact pixels. The others show examples of tissue tears &
folds (6), ink stains (2), blur (2), or other damages.

For each slide and network, we classify the result on each test tile as Good (results are acceptable),
False Negative (some artefacts are not detected or the segmented region is too small), False Positive
(some tissue region without artefact are segmented), or Bad (completely misses artefacts or detects too
much normal tissue as artefacts). Examples of such results are illustrated in Figure 4, where tissue
regions considered as correct are shown in pink and those considered as artefactual are shown in green.

To compare the results of the different strategies and networks, we score the predictions on each
tile by giving penalties according to the type of error (Good = 0, False Positive = 1, False Negative =
2, Bad = 3). False positives are given a lower penalty than false negative, as it is typically better to
overestimate an artefactual region than to misidentify an artefact as normal tissue. We compute the sum
of the penalties on all 21 tiles to get a final penalty score, a lower penalty score thus meaning a better
strategy.

The last slide from Block C, which is distinguished from the others by the tissue origin and the IHC
marker (see Table 2), is used to visually assess the results on a whole slide image in addition to four H&E
slides from the TCGA set containing different types of artefact (identified in the “HistoQCRepo” [14]).

For whole-slide prediction, we first perform background detection (i.e. glass side without tissue)
by downscaling the image by a factor of 8, converting the image to the HSV color space, and finding
background with a low saturation (S < 0.04). The resulting background mask is rescaled to the original
size and fused with the artefact segmentation result. All slides are analyzed at 1.25x magnification. We
use a regular 128x128 pixels tiling of the whole slide with 50% overlap and keep the maximum output
of the artefact class for every pixel.

6



Figure 4: Illustration of the classification of results. (left) Classified as “Bad”: (top) None of the artefacts
found, (bottom) falsely detected too much normal tissue as artefacts (in green). (middle) Classified as
“Good”: (top) Most artefacts found (in green), (bottom) normal region correctly classified. (right)
Classified as (top) False Negative, (bottom) False Positive.

3 Theory
In a segmentation problem, the instance in a dataset is the pixel. Ideally, perfect annotations for
segmentation will provide a correct class for each pixel of each image of the dataset. Let X = {Xij} be
the image data such that Xij is the j-th pixel of the i-th image, and Y = {Yij} the class of this pixel. As
summarized in Table 3, there are different types of supervision imperfection, i.e. affecting the Yij values,
that may occur in a dataset. In classical machine learning or in deep learning, different methods were
developed to be able to process these different imperfections. As briefly described below, these methods
can act on different parts of the machine learning pipeline. Some act on the data pipeline (i.e. how the
data is fed to the learning algorithm), while others propose modifications on the learning algorithm.

Supervision
imperfection

Definition and machine learning
method

Typical cases in image segmen-
tation

Incomplete Label Yij is not defined for a se-
ries of instances Xij in the dataset.
Method: semi-supervised learning.

Only identified parts of images, or
only some of the images in the
dataset, are annotated.

Imprecise Label Y is defined only for group of
Xij . Method: weak learning.

The same class is provided for all the
pixels of a patch (patch-level annota-
tions).

Noisy Yij is considered as defined for each
Xij but may be false. Method: label
noise estimation.

Some objects to segment are forgot-
ten.

Table 3: Description of supervision imperfections and machine learning methods developed to process
them.

3.1 Semi-supervised learning from incomplete annotations
The first imperfection type reported in Table 3 occurs when the class information is unknown for a well-
identified portion of the dataset. In classical machine learning, semi-supervised methods were developped
to process such datasets, mixing labelled and unlabelled data. These methods often use the unlabelled
instances to estimate the shape of the distribution, and afterwards the labelled data to separate the
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distribution into classes [20]. Those methods make the assumptions that samples which are close to
each other in the distribution share the same label, and samples which are further away have different
labels [21].

3.2 Weak learning from imprecise annotations
The second type occurs when the class information is only provided to groups of instances. In image seg-
mentation, we can have any form of annotation that is less precise than pixel-perfect, such as: patch-level
annotations, bounding boxes, polygonal approximations, or points [22][23][24]. Learning methods able to
use such imprecise or weak annotations often use the Multiple Instance Learning (MIL) framework [25],
in which unlabelled instances are grouped into labelled bags. A typical way of transposing the MIL
framework to DL segmentation networks is to use patch-level labels during training with a classification
loss, transforming the feature maps of the network into a single class prediction with some form of global
pooling [26]. The feature map activation levels are then used to produce a pixel-level segmentation. The
feature maps may be combined from different scales and with additional constraints, and these methods
have been shown to produce encouraging results in digital pathology [27].

3.3 Label noise estimation
The third and last type of imperfection considered here occurs when all the instances are labelled but
with possible class errors. These datasets are described as containing noisy labels. They are typically
characterized by a noise matrix (which is usually unknown) giving the probability of two classes being
mistaken with each other [28].

As mentioned in the Introduction, we are interested in segmentation tasks usual in digital pathology
where only one type of object must be distinguished from the rest. For these tasks it is quite uncommon
for an (experienced) annotator to make a “false positive” annotation error, i.e. to label a part of the
background as an object of interest. In contrast, “false negative” labels are much more common: some
objects of interest may be missed or regions of the image are deliberately not annotated. We can therefore
assume that regions around annotated objects of interest are more likely to be correctly supervised than
regions far from any annotation. This knowledge can be used in different ways. In [29], the situation
of “positive and unlabelled examples” is addressed by first estimating the probability of any unlabelled
instance of being positive (in other words, estimating the density of positive examples in the unsupervised
part of the dataset). The unlabelled examples are then weighted so that they are treated both as positive
and negative examples. Another strategy is to only use the parts of the dataset which are close to positive
examples [11]. This means using less training data, but the data used is more likely to be properly
supervised.

3.4 SNOW supervision in digital pathology and impact on deep learning
Real-world datasets in digital pathology show all the types of imperfections described above. Image- or
patch-level labels (such as cancer or non-cancer) are relatively quick and easy to get for a large amount of
images, whereas pixel-level annotations are difficult and time-consuming [30]. In some digital pathology
tasks, the classification of the objects themselves is debatable [31]. More generally in any segmentation
problem, the borders of the object may be fuzzy, leading to an uncertainty on the neighbouring pixels. In
addition, uncertainty on a label can occur because of a lack of consensus between expert annotators. In
fact, the annotation imperfections are intertwined with each other in most real-world digital pathology
problems. In a recent study, we brought them together in the concept of Semi-Supervised, Noisy and/or
Weak, or SNOW supervision [10]. In that study, we developed an experimental framework to evaluate the
impact of SNOW supervision on deep learning algorithms based on convolutional neural networks. We
showed that SNOW supervision has adverse effects on Deep Convolutional Neural Networks (DCNNs).
However, our results were based on a single network architecture and limited experiments using a single
data set, which provided only partial insight into the problem. As detailed below, the same framework is
used in the present study for further investigation involving additional datasets, additional (and deeper)
networks, as well as additional learning strategies to counteract SNOW effects, in order to draw the most
general conclusions possible.
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Dataset F1
Original (GlaS) 1.000
10% Noise 0.931
50% Noise 0.589
Low deformations (σR = 5px and f = 10) 0.960
Medium deformations (σR = 10px and f = 40) 0.917
High deformations (σR = 20px and f = 80) 0.830
Bounding Boxes 0.836
50% Noise + HD 0.455
50% Noise + BB 0.557

Table 4: SNOW datasets generated from the GlaS training set and assessment of the level of the anno-
tation corruption (Per-pixel F1-Score vs Original)

4 Results
Our experiments with the two “clean” datasets submitted to our annotation corrupting procedure (for
the training set only) have several goals. First, they allow us to estimate the extent to which different
types of SNOW distorsion make the supervision imperfect. Second, we want to assess the SNOW
supervision effects on our baseline Deep Convolutional Neural Networks (DCNNs). Third, we aim to
assess how different learning strategies can counterbalance SNOW effects, and finally to infer from the
results guidelines for the choice of strategies to be used for different types of annotation imperfection.

4.1 Effects of SNOW supervision on DCNN performance
We first estimate the extent to which the different types of annotation corruption make the supervision
imperfect. For this purpose, we compute the per-pixel F1-Score of different SNOW datasets generated
from the GlaS training set with the original set as reference (see Table 4). A low amount of deformation
is associated with a 4% loss in the F1-Score. This indicates that when a pixel-perfect segmentation
is difficult to define (for instance with objects with fuzzy or debatable boundaries), results based on
typical segmentation metrics (F1-Score, Hausdorff distance...) should be interpreted carefully. In such a
situation, a difference of a few percent between two algorithms could thus be considered as irrelevant.

Figure 5a shows the effects of increasing noise levels introduced in the supervision of the GlaS train-
ing set on the performance of the 3 baseline DCNNs. Despite their differences in terms of size and
architecture, the three networks behave very similarly, with some robustness up to 30% of noisy labels.
However, a clear decrease in performance is observed from 40% or 50% of supervision noise.

The effects of annotation erosion or dilatation are much less drastic, as shown in Figure 5b, and
polygonal approximations seem to have no significant effects (Figure 5c). Bounding boxes can be seen as
a such extreme polygonal approximation. Again, the three networks behave in a very similar way with
regard to these types of annotation corruption.

The effects of different types of corruption combined, as mentioned in Table 4, are investigated in the
next experiments. We can already conclude that noisy labels have the most negative impact on DCNN
performance, in particular from 50% of noise. In view of all these observations, we selected the following
corrupted (SNOW) training datasets to test the abilities of different learning strategies to counteract the
effects of annotation imperfections:

• 50% Noise (Noisy)

• Bounding boxes (BB)

• 50% Noise + Bounding Boxes (NoisyBB)

• 50% Noise + High Deformation (NoisyHD)

4.2 Performances of learning strategies on corrupted datasets
4.2.1 Selection of the strategies

Given the very similar behaviours observed above for the three baseline networks with respect to SNOW
supervision, only the ShortRes network is used in the first experiments on the GlaS datasets to investigate
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Figure 5: Effects caused by increasing levels of imperfections in the annotations on the F1-scores for the
ShortRes, PAN, and U-Net baseline networks.

the effects of different learning strategies. This allows us to draw the first lessons that we then confirm
on the Epithelium dataset using the ShortRes and PAN networks, knowing that original versions of both
datasets are similar in terms of the quality and nature of the annotations.

As explained in section 2.3.2, we do not include patch-level strategies (considered irrelevant in view
of the characteristics of the dataset) in our comparison. The strategies compared to the baseline are
therefore:

• Only Positive (OnlyP)

• Semi-Supervised (with fine-tuning on the full dataset)

• Semi-Supervised + Only Positive (with fine-tuning only on the positive data) (SS-OnlyP)

• Generated Annotation (GA)

• Label Augmentation (LA)

Like the baseline, all of these strategies make use of basic data augmentation. Concerning the
Generated Annotation strategy, we had to choose the probabilities of using the annotation generator for
the negative patches present in the SNOW datasets. As the original datasets are quite strongly biased
towards the presence of objects of interest, we use a probability of either 75% (GA75) or 100% (GA100)
of using the annotation generator.

4.2.2 Results on the GlaS dataset

F1 Original Noisy BB NoisyBB NoisyHD Stat. score
Baseline 0.841 0.231 0.724 0.511 0.212 -22
OnlyP 0.836 0.768 0.730 0.697 0.660 10
Semi-Supervised 0.831 0.467 0.756 0.522 0.207 -11
SS-OnlyP 0.819 0.729 0.740 0.730 0.428 5
GA100 0.837 0.764 0.755 0.700 0.621 12
GA75 0.843 0.736 0.754 0.695 0.608 10
LA 0.837 0.575 0.761 0.631 0.449 -4

Table 5: Averaged F1-score computed on the test set (80 images) for the ShortRes network trained with
different datasets. F1-scores in bold are not found significantly different (i.e. p > 0.05) from the score
of the best strategy for that dataset using the Nemenyi post-hoc test (comparing the F1-scores obtained
on the same test image). The statistical score calculates a balance between the number of significant
pairwise comparisons where the result of the strategy is the worst and those where it is the best (see
main text for details).
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Table 5 details the results obtained and Figure 6 illustrates some of them. Surprisingly, these data
evidence that the negative effects of the 50% Noisy condition on the baseline network are strongly reduced
when using “BB” type annotations. This may be a by-product of the high density of objects in the original
datasets. As the bounding boxes cover more tissue area, they may give the networks a bias in favour of
the positive pixel class, which helps them get a better score on the uncorrupted test set.

It should be noted that all strategies outperform the baseline, except on the (noise-free) BB dataset
for which the differences are not significant. Of the learning strategies tested, three appear to be more
effective overall. These are the “Only Positive” and the two “Generated Annotations”. As illustrated in
Figure 6, the data in Table 5 should be considered as raw results provided by each learning strategy
itself without the beneficial help of post-processing.

Figure 6: Results on two different images from the GlaS test set obtained with the ShortRes network
trained on the Noisy set with different learning strategies. From left to right: correct segmentation,
Baseline, OnlyP, GA100. The results could be considerably improved with some basic post-processing
(such as morphology operations), but these raw results make the effects of the learning strategies more
visible.

4.2.3 Results on the Epithelium dataset

To confirm the results reported above, we select the best performing strategies from the GlaS experiment
(OnlyP and GA100) to compare with the ShortRes and PAN baseline networks. Regarding the corrupted
datasets, we use the 50% noise (Noisy) and the high deformation (HD) sets because there are few
differences in the way the different strategies perform against BB deformations. We also include the
“Label Augmentation” (LA) strategy to evaluate its effectiveness against high annotation deformations.

The results in Table 6 indicate that regardless of the network, the baseline is only slightly affected by
high annotation deformations (combining high levels of both contour simplification and erosion/dilation)
and does not benefit from a particular learning strategy in this case. This result confirms that observed
for bounding boxes applied to the GlaS data.

ShortRes Original Noisy HD PAN Original Noisy HD
Baseline 0.8532 0.5447 0.8107 Baseline 0.8595 0.6391 0.8283
OnlyP 0.8478 0.7298 0.8078 OnlyP 0.8574 0.7619 0.8263
GA100 0.8480 0.6710 0.8094 GA100 0.8611 0.6806 0.8265
LA 0.8373 0.5768 0.8084 LA 0.8577 0.6480 0.8142

Table 6: Average F1-scores on the Epithelium test set. The Friedman test is not significant for the
Original and HD training sets (p > 0.1). However, it is highly significant for the Noisy set (p = 2× 10−5

for ShortRes and 1×10−5 for PAN), whereas the Nemenyi post-hoc is not significant between the OnlyP
and GA100 strategies (p > 0.2).

With the original training set and the baseline strategy, ShortRes performs similarly to PAN. With
the Noisy training set and the baseline strategy, ShortRes is much worse than PAN but recovers a lot (i.e.
60% of the performance loss) with the OnlyP strategy. With both networks, the OnlyP strategy confirms
the good results obtained on the GlaS data and provides the best complexity/accuracy ratio. Using LA
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does not improve the results, even for the HD training set. Illustrations of these results are provided in
Figures 7 and 8. Figure 7 compares the results provided on a test slide by the baseline ShortRes that
was trained with either the original, HD or noisy sets. Figure 8 compares the results provided on a test
slide by the baseline, OnlyP, GA100 and LA ShortRes networks trained with the noisy set.

Figure 7: Results on a test slide for the baseline ShortRes network trained with different datasets. From
left to right: test image and the results obtained when using original, HD and noisy training sets. False
positive pixels are shown in blue, false negatives in red and correctly segmented areas in white.

Figure 8: Results on a test slide for ShortRes networks trained with the noisy dataset and different
learning strategies. From left to right: baseline, OnlyP, GA100 and LA. False positive pixels are shown
in blue, false negatives in red and correctly segmented areas in white.

4.3 Results on the Artefact dataset
Table 7 shows the results of our qualitative analysis carried out on the test tiles. The GA50 strategy
gives the best results with the ShortRes network and confirms its effectiveness with the PAN network.
The Only Positive strategy consistently overestimate the artefactual region, with the largest FP number.
In this case of low density of objects of interest, the results show that limiting the training only to
annotated regions is too restrictive. It should be also noted that for both networks the GA50 strategy
is able to retrieve all the “bad” cases from the baseline, which seems less accurate with PAN than with
ShortRes.

ShortRes Good FP FN Bad Penalty score
Baseline 14 0 5 2 16
GA50 16 1 4 0 9
OnlyP 13 7 0 1 10
PAN Good FP FN Bad Penalty score
Baseline 13 0 5 3 19
GA50 19 0 2 0 4

Table 7: Results of selected strategies on the 21 artefact test tiles, including a penalty score (see main
text). The results in bold identify the best strategy for each network.

In Table 8, we qualitatively describe the results of the PAN-GA50 network on whole slides. Figure 9
compares the results of the PAN-Baseline and PAN-GA50 networks on part of the Block C slide, with
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Figure 9: Results on part of the Block C slide provided by the PAN network trained with the Baseline
(left) or GA50 (right) strategy. The Baseline network misses large portions of the artefacts (see blue
arrows).

details shown in Figure 10. Other illustrations on the full block C and on TCGA slides are available in
the supplementary materials. It should be noted that the processing time for PAN-GA50 took around 2
minutes 20 seconds for the 4 TCGA slides.

Slide (Main) artefacts PAN-GA50 result
Block C Tears and folds PAN-GA50 misses some small artefacts but its results are gener-

ally acceptable.
A1-A0SQ Pen marking Pen marking is correctly segmented and small artefacts are found.
AC-A2FB Tissue shearing, black dye The main artefacts are correctly identified.
AO-A0JE Crack in slide, dirt Some intact fatty tissue is mistakenly labelled, but all artefacts

are found and almost all intact tissue is kept.
D8-A141 Folded tissue The main artefacts are correctly identified.

Table 8: Qualitative results of PAN-GA50 on the whole slides (including TCGA ones).

5 Discussion

5.1 Imperfect annotations and learning strategies
In those experiments, we show that SNOW imperfections in the annotations have a significant effect on
the results of typical DCNNs. In particular, datasets in which many of the objects of interest are not
annotated perform poorly to train networks. In contrast, small to high deformations in the contour of
the objects have less impact on the performances of the networks, and no additional strategy make a
significant improvement over the baseline. This suggests that, in a real-world setting, it may be better
to spend more energy increasing the dataset with quickly annotated contours rather than trying to get
pixel-precise annotations. Once the dataset has been done, conversely, it is better to either discard the
regions of the images with no annotations, or to include the uncertainty on the labels in the learning
process.

The main insights that we draw from the above experiments are as follows: (a) it is important
to identify the types of imperfections present in a training dataset in order to use a learning strategy
adapted to them; (b) training with a smaller but more accurate dataset performs better than with a
larger imperfect dataset; (c) the part of the training dataset with potentially less accurate or missing
annotations may be used if we take into account the uncertainty in these annotations and try to address
this with an appropriate learning strategy, as we did with the “Generated Annotations” strategies.
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5.2 Application to real-world datasets
Our results show that a deep learning approach to artefact segmentation can produce interesting results
as long as learning strategies adapted to the characteristics of the dataset are used. Artefacts in digital
pathology slides are ill-defined objects, which make them particularly challenging to annotate precisely.

Our GA method succeeds in learning from a relatively small set of imprecise annotations, using images
from a single tissue type. It generalizes well to new tissue types and previously unseen IHC markers
(see Figure 10). This method provides a good compromise between using as much of the available data
as possible (as in semi-supervised methods) and giving greater weight to the regions where we are more
confident in the quality of the annotations (as in the Only Positive strategy). The baseline method
underestimates the artefactual region, as expected from the low density of annotated objects in the
dataset. The Only Positive strategy, on the other hand, is too limited in the data that it uses and,
therefore, has too few examples of normal tissue to correctly identify the artefacts.

While the PAN network was slightly better than the ShortRes network with the GA50 strategy on
the test tiles, it performed worse with the Baseline version. Since ShortRes is significantly simpler (20x
less parameters), these observations suggest that for problems such as artefact detection, better learning
strategies do not necessarily involve larger or more complex networks.

Figure 10: Detail from our test slide with IHC stainig showing a region of damaged tissue. (left) RGB
image at 1.25x magnification, (right) segmentation (in green) provided by PAN-GA50.

By using strategies adapted to SNOW annotations, we were able to solve the problem of artefact
segmentation with minimal supervision. Extending the network to new types of artefact should only
require the addition of some examples with quick and imprecise annotations for fine-tuning.

6 Conclusion
In this work, we have shown that the results obtained on clean datasets do not necessarily transfer
well to real-world use cases. Challenges typically use complete and pixel-accurate annotations that are
often missing in real-world digital pathology problems that must instead rely on annotations with many
SNOW imperfections. In addition, challenges typically rank algorithms to identify the best methodology
to solve a given type of task. However, it has been shown that these rankings are often not robust to
small differences in annotations caused by different annotators [3]. These rankings should be considered
even more carefully if the dataset itself may not be representative of the type of annotations that the
methodology would encounter in similar real-world applications.

Examining a dataset through the SNOW framework may help reduce guesswork that often accompa-
nies the selection of strategies for solving DL tasks. Our results may also help researchers who need to
annotate a dataset to find the most time-efficient method of annotation to achieve adequate results (see
flowchart in supplementary materials). The first questions to ask when analysing the data are:

• What is the density of objects of interest (and of the annotations)? If it is high, is it because
the data was cherry-picked and therefore may not be representative of distribution that will be
observed in real-world applications? Are all (or most) of the objects well-annotated? In high-
density datasets, it may be preferable to limit the training to positive areas only, unless we are
certain that the annotations are exhaustive.
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• How precise are the annotations? Are they pixel-precise? Is “pixel-precise” possible given the
nature of the data ? The level of the annotation precision influences both the selection of possible
learning strategies and the evaluation. In the case of data with imprecise annotations, evaluations
made using quantitative per-pixel measures, such as Dice or Hausdorff, should be interpreted
very cautiously. Although our results on datasets with imprecise contours do not show significant
benefit for any of the tested strategies, this does not exclude the possibility of processing them
more efficiently.

• How accurate are the annotations? How much can we trust the class of each pixel? If the anno-
tations are noisy, is it possible to estimate the noise matrix, at least roughly, and integrate this
information into the learning process?

Our results have shown that we can improve the performance of DL methods by using a dataset-
adapted strategy that takes into account the different aspects of SNOW supervision in annotations, such
as the GA50 strategy for the artefact data. The architecture of the network itself, meanwhile, only has
a limited effect on the overall results.

Future work should try to incorporate weakly supervised learning strategies using more suitable
benchmark datasets into this framework to provide more potential avenues to explore in order to design
the best strategy for a given task. While Label Augmentation did not give encouraging results here,
the idea of of incorporating contour uncertainty into learning should not be abandoned, and may lead
to ways to deal more specifically with the type of imperfection exemplified in our “deformed” datasets.
Finally, it would be interesting to study the impact of SNOW annotations in the case of multi-class
segmentations [32].
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