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ABSTRACT

Panoptic Quality, designed for the task of "Panoptic Segmentation” (PS), has been used in several digital pathology challenges
and publications on cell nuclei instance segmentation and classification (ISC) since its introduction in 2019. Its purpose
is to encompass the detection and the segmentation aspects of the task in a single measure, so that algorithms can be
ranked according to their overall performance. A careful analysis of the properties of the metric, its application to ISC and the
characteristics of nuclei ISC datasets, shows that is not suitable for this purpose and should be avoided. Through a theoretical
analysis we demonstrate that PS and ISC, despite their similarities, have some fundamental differences that make PQ
unsuitable. We also show that the use of the Intersection over Union as a matching rule and as a segmentation quality measure
within the PQ is not adapted for such small objects as nuclei. We illustrate these findings with examples taken from the NuCLS
and MoNuSAC datasets. The code for replicating our results is available on GitHub (https:/github.com/adfoucart/panoptic-
quality-suppl)

Introduction

The notion of "Panoptic Segmentation" (PS), and its corresponding evaluation metric "Panoptic Quality" (PQ), was introduced
by Kirillov et al. in 2019'. Panoptic segmentation, per Kirillov’s definition, attempts to unify the concepts of semantic
segmentation and instance segmentation into a single task, and a single evaluation metric. In PS tasks, some classes are
considered as stuff (meaning that they are regions of similar semantic value, but with no distinct instance identity, such as "sky"
or "grass"), and some as things (countable objects). The concept was initially applied to natural scenes using the Cityscapes,
ADE20k and Mapillary Vistas datasets. It was then applied to the digital pathology task of nuclei instance segmentation and
classification in Graham et al’s 2019 paper that introduced the HoVer-Net deep learning architecture?.

The PQ was then adopted as the ranked metric of the MoNuSAC 2020 challenge?, then the CoNIC 2022 challenge®, and
was used by several recent publications®~°.

In our analysis of the results of MoNuSAC!?, we showed with a very practical example how this metric can hide a lot of
useful information about the performance of the competing algorithms. In this work, we analyse more generally why the PQ
metric is not a good fit for cell nuclei instance segmentation and classification and should therefore be avoided. In particular,
we demonstrate the following:

* The PQ is used in digital pathology on instance segmentation and classification tasks, but these tasks are fundamentally
different from the panoptic segmentation task that the metric was designed to evaluate.

* The reliance on the Intersection over Union segmentation metric, both as a martching rule and as part of the PQ
computation, is not appropriate for nuclei segmentation, because of the small size of the target objects.

* The summarization of the performances of a complex, multi-faceted task into a single entangled metric leads to poor
interpretability of the results.

We will first use a theoretical approach to explain the aforementioned problems. We will then use examples from public
challenges and benchmark datasets to demonstrate their effect.
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Definitions

Using the definition of a "Panoptic Segmentation” problem from Kirillov et al.!, each pixel of an image can be associated with
both a ground truth class ¢ and a ground truth instance label z. A pixel cannot have more than one class or instance label (i.e. no
overlapping labels are allowed), but a pixel does not necessarily have an instance label (i.e. z can be undefined). The distinction
between things and stuff therefore becomes that szuff are classes that do not require instance labels, while things are classes that
do require them.

The PQ considers each class separately. For each class ¢, G, = {g;} is the set of ground truth instances in the class (for
stuff, there will be a single element in the set, as there are no separate instances). Given a set of corresponding class predictions
P. ={p;}, the PQ, is computed in two steps.

First, the matches between the ground truth instances and the predicted instances are found for each class. A match is

_ lenp] . .
= Tqopy > 0-5, where | | is the cardinality

defined as a pair (g, p;) such that the Intersection over Union verifies IoU (g, p;)
of the set.

Using this strict matching rule, each segmented instance in G, and F. is assigned to one of three sets: True Positives (TP),
False Positives (FP) and False Negatives (FN).
TP = {(gk, p1):10U (g, p1) > 0.5}
FP = {p;:1oU gk, pi) < 0.5Vg,}
FN = {g; 10U (gx, p1) <0.5Vp;}

The strict matching rule ensures that for a given ground truth object instance g there can only be a single corresponding
predicted instance p;.
Then, the PQ of the class ¢ in the image i can be computed as:

Z(gk,pz)eTPIOU(gk,pz)

PQ.;=
TP+ LIFPI+ LIFN]
Which can be decomposed into:
RQ.; = 7P|
c,l —
" |TP|+LFP|+ 1|FN|
SO = Lge.pperrloU gk, p1)
i —

|TP|
PQc,i = SQc,i X RQc,i

RO, the "Recognition Quality" of Kirillov et al.!, corresponds to the per-object Fi-score of class ¢ in image i, and SO,
the "Segmentation Quality", corresponds to the average IoU of the matching pairs of ground truth and predicted instances of
this class. In digital pathology, the RQ is also often referred to as the Detection Quality, and therefore noted as DQ by Graham
et al.?. As explained in the next section, the same definitions of RQ and DQ have different impacts depending on the precise
nature of the task.

Different choices should therefore be made in how to aggregate the per-image, per-class PQ.; into a single "average
multi-class PQ". In the original HoVer-Net publication?, the MoNuSAC challenge® and the Lizard dataset publication®, the
multi-class PQ; is computed for each image as PQ; = ﬁ ZZL PQ.;, where m; is the number of classes present in image i. The
average PQ is then computed on the n images as:

1 n
aPQ =~y PQ;
niz

In contrast, in the more recent CoNIC challenge4, the TP, FP, FN and IoU are computed for each class over the images in
the dataset, so that the PQ. is computed on all images merged together, and the final average PQ is simply:

1 m
mPQ = -} PQ.
c=1

These processes are illustrated in Figure 1. This figure also illustrates one of the potential issues with the first method,
which is how to deal with missing classes in the annotation or in the predicted objects for an image. In the second image in
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Figure 1. Illustration of the process for computing the Panoptic Quality on a set of 3 images, with the two different
aggregation methods: on the bottom, the aPQ is computed for each image based on the per-class values; on the right, the
individual components (TP, FP, FN, IoUs) are aggregated on all images before computing the mPQ. The ground truth and
predicted masks are represented as solid and hatched discs, respectively. The b and o indices correspond to the blue and orange
classes.

Figure 1, there are no predicted blue objects, meaning that there are no True Positives, and the SQ is therefore undefined. It
seems logical that, if there is either a ground truth object and no prediction, or a prediction and no ground truth, the resulting
PQ should be 0. It is however not a result that arises directly from the definition.

Theoretical analysis

Panoptic segmentation vs instance segmentation and classification
The first problem with using PQ for assessing nuclei instance segmentation and classification is that it is not a panoptic
segmentation task. Panoptic segmentation is characterized by two key factors:

» Every pixel is associated with one single class label.

 Every pixel is associated with one single optional instance label.

In instance segmentation and classification (ISC), however, the class label is also optional, as there is typically a "background
class" that corresponds to everything that is not an object of interest (which can be the glass slide itself, or simply regions or
objects that are not part of the target classes). Additionally, if a pixel is associated with a class label, it also needs to have an
instance label (i.e. there is no stuff, only things, using Kirillov’s terminology), as illustrated in Figure 2.

This is not necessarily a problem in itself. Metrics can find uses outside of their original, intended scope: the IoU is generally
traced to Paul Jaccard’s study of the distribution of flora in the Alps!!, long before "image segmentation" was on anyone’s
radar. There is, however, a problem with the transition between the PS and ISC tasks in this case. The "Recognition Quality" in
Kirillov’s definition corresponds to the classification F1 score, whereas the "Detection Quality" in Graham’s definition is the
detection F1 score. The definition appears identical in both cases, but there is actually a key difference. In the classification F1
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Figure 2. Difference between a PS and an ISC task. In the former, every pixel of the image is associated to a class and an
optional instance. Some classes ("stuff") always count as a single instance, even if disjointed (Y and G on the left). In an ISC
task, however, it is possible for pixels to have neither class nor instance and be part of the "background" (in white).

score, it is assumed that everything has a class. The confusion matrix at the object level will therefore look something like this
(here for 3 classes):

CM;,y, CMy;, CM3
CMy, CMy CM»ys
CM3 CM3, CMss

So that, if different predictions are compared, the sum of the elements of this matrix § =} ;; CM;; will be constant.

In a detection F1 score, however, there is an additional "background" class that is present. It is therefore possible for
predicted objects not to belong to any target class, and for ground truth objects to have no corresponding prediction. The
confusion matrix for a 3 classes problem will therefore actually be a 4x4 matrix:

N.C. CMy CMy, CMys
CMyy CM;; CMy;, CM;3
CMyy CMp; CMy CMys
CMsy CM3; CMs CMss

The top-left element being "Not Countable", as there are no countable and correctly predicted "background objects". The
first row will correspond to false positive detections (predicted objects with no corresponding ground truth) and the first column
to false negative detections (target objects that were completely missed). In this case, the sum of the elements of the matrix
is no longer constant between different algorithm’s predictions. The sum of the first row only depends on the algorithm’s
predictions, while the sum of each subsequent rows is determined by the ground truth class distribution.

This may seem like a relatively minor issue, but it adds a lot of confusion to the interpretability of the metric. The original
PQ mixes classification and segmentation, but both can be separately analysed in the RQ and SQ. The PQ applied to ISC,
however, mixes classification and detection in the DQ, making it even more difficult to understand why an algorithm has a
better score than another.

More problematic may be the fact that, as the PQ is computed per-class, it gives a higher penalty to a good detection with
a wrong class (which will be counted as a "false negative" in the ground truth class, and as a "false positive" in the predicted
class) than to a missed detection (which will only be a "false negative" in the ground truth class).

Intersection over Union for digital pathology objects
The IoU does not appear a priori to be a controversial metric for evaluating a segmentation task. It is widely used, including in
many digital pathology challenges and benchmarks'?. However, it also has known weaknesses, particularly when used on small
objects!?.

As previously defined, the IoU between ground truth object g; and predicted object p; can be expressed as:
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Another way to compute it is to first define the per-pixel TP, FP and FN as:

IoU (gk, p1)

TP(ge pi) =8N pil
FP(gk,pi) = [~gx N pil
FN(gk, p1) = [N =i
Where — denotes the elements that are outside of a set of pixels. The IoU can then be written as:

TP(gk, P1)
TP(gkapl)+FP(gk7pl)+FN(gk7pl)

The problem with the IoU comes from the combination of two different characteristics which are very common in digital
pathology objects:

10U (gx, p1) =

a) The exact borders of the object are very often fuzzy and ill-defined.
b) The area (i.e. number of pixels) of the object can be very small, as in the case of cell nuclei.

Because of a), any predicted segmentation, even accurate, is likely to have some misalignment around the boundary
of the object. This tends to make FP and FN correlated to the perimeter of the object while TP tends to be correlated with the
object area. As the % ratio is generally higher for small objects, the corresponding IoU therefore tends to be lower, even
for a very good segmentation. For objects which are very small even at high levels of magnification, such as nuclei, this can
lead to very problematic results, as we show in our experiments below.

This problem is compounded by the fact that the IoU does not weight overestimation and underestimation of the object

size in the same way. If we imagine a perfectly matching prediction, and then add n pixels from outside of the object to

the predicted set, the corresponding "overestimated IoU" is JoU+ = T1T>in' If, however, we remove n pixels from the set of
true positives, we end up with JoU ™~ = %, as these removed pixels will count both as "less true positives" and "more false

negatives". In the "overestimated" case, they would count as "less true negatives", but those have no impact on the IoU. For
an object with an area of 150px, for instance, an overestimation of 50px of its size would lead to an IoU of 0.75, whereas an
underestimation of 50px would lead to an IoU of 0.5.

These properties of the loU impact the PQ at two different levels: the matching rule and the segmentation quality. For the
matching rule, it means that the conjunction of a small object and an algorithm that underestimates its size can easily lead to
erroneous "false detections", where clearly matching objects are rejected due to an IoU under 0.5. For the segmentation quality,
the problem lies with interpretability and class averaging. When objects from different classes have different sizes, the limits
of what would constitute a "good" IoU within each class should be different. The calculation of an average PQ between the
classes (see Figure 1) therefore adds hidden "weights" to the metric. Indeed, algorithms that perform poorly on classes with
smaller objects necessarily tend to have a lower average IoU (and therefore PQ) than those that perform poorly on classes with
larger objects.

Additionally, it is well known that the IoU does not consider the shape of the object (like other overlap-based metrics
such as the Dice Similarity Coefficient). As demonstrated by Reinke et al.'3, predictions that completely miss the shape of the
object can end up with the same IoU as those that match the shape well, but are slightly offset, or slightly under- or overestimate
its size. To get a better sense of the segmentation performance of an algorithm, it is often useful to refer both to an overlap-based
metric like the IoU and to a border distance metric such as Hausdorff’s Distance (HD). By using the PQ, an important aspect
of the evaluation is therefore completely missed. In digital pathology tasks, the shape of the object of interest is often very
relevant to the clinical and research applications behind the image analysis task. It is therefore ill-advised to base a choice of
algorithm on a metric that ignores that particular aspect.

Interpretability of the results
As we have shown in a previous work'?, the PQ metric hides a lot of potentially insightful information about the
performances of the algorithms by merging together information of a very different nature. While the SQ and RQ have the
same range of possible values, being bounded between 0 and 1, the implication of multiplying these values to get the PQ is that
the impact of a change in SQ by a factor a is exactly the same as a change of RQ by the same factor.

The significance of these changes for the underlying clinical applications, however, can be very different. As shown above,
a 10% reduction in the SQ may only indicate a small underestimation of each segmented object’s size (which for small objects
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would probably be within the typical interobserver variability range), whereas a 10% reduction in the DQ indicates potentially
much more significant errors, with entire objects being added as false positives, or missed as false negatives. The interpretation
of the relative change in SQ is dependent on the size of the ground truth objects, while the interpretation of the relative change
in RQ is more likely to depend on the class distribution. Ranking different algorithms with the PQ therefore leads to results
that cannot really be related to clinical application needs.

Experimental analysis

Material and methods
To show the concrete impact of our theoretical analysis, we select two public digital pathology datasets designed for instance
segmentation and classification: NuCLS'#, and the MoNuSAC challenge dataset’.

NuCLS dataset and experiments

The NuCLS dataset'* proposes a "crowdsourced" dataset where the annotations are made by non-pathologists from algorithmic
suggestions, and with corrections by junior and senior pathologists. It also provides a "multi-rater" dataset, where detailed
individual annotations from experts and non-experts are provided on selected FOVs. The objects of interest are nuclei in
breast cancer tissue, and all images and annotations are provided with a resolution of around 0.25 microns-per-pixel (40x
magnification). There are 13 "raw classes", which are then hierarchically grouped into 7 "classes" and then 4 "super-classes".
All slides were stained with Haematoxylin & Eosin (H&E), and were obtained from the TCGA (The Cancer Genome Atlas)
archives.

Using the raw annotations from the evaluation dataset, we select all the pathologists (junior and senior) and extract all their
detailed annotations (excluding annotations where only the bounding box is provided). Then, for each pair of experts, we
compute all the matching pairs of annotations. We define a match here in the loosest possible sense, i.e. as any overlapping pair
of annotated objects. If multiple matches are found for a single object, we select the match with the largest IoU. We then look
at the relationship between the experts’ IoU and the object area.

To better visualise the sensitivity of the IoU to small differences in overlap, we also select a single nucleus and compare the
ground truth from one of the senior pathologists to different proposed alternative segmentations, which would all be considered
as "correct”" from a clinical perspective, and we measure their [oU compared to the ground truth. Finally, we also compute
Hausdorft’s Distance (HD) for each matching pair of expert annotations. The HD is the maximum distance between any point
in the contour of an object and its closest point in the contour of the other object. We look at the relationship between the HD
and the IoU.

MoNuSAC dataset and experiments

The MoNuSAC challenge dataset’ includes annotations for nuclei of four different classes (epithelial, lymphocyte, neutrophil
and macrophage) from tissue sampled in different organs (breast, kidney, lung, prostate). All slides were stained with H&E
and, like in NuCLS, are sourced from the TCGA archives and are presented at a resolution of around 0.25 mpp. Two different
aspects are interesting to explore with the publicly available training and test data. First, there is a large difference in set size
and nucleus size between the different classes. Second, the detailed predictions made on the test set by the algorithms of four
participating teams are available, which allows us to directly examine how the PQ (whatever the aggregation method used)
penalises different types of error in a real challenge setting.

We therefore conduct the following experiments on the MoNuSAC test set.

Based on the ground truth annotations, we create three different slightly modified versions of the annotation masks: one
with a single-pixel dilation, one with a single-pixel erosion, and one with a single-pixel vertical shift of the whole masks. In all
three cases, those modified versions would not be "worse" than the original and fall well within the variability caused by the
fuzziness of the contours. We compute the IoU of each of those modified objects against that of the original ground truth and
look at the relationships between IoU, object area and class.

We then look at selected examples from the participants’ predictions to see how their errors were penalised, and where the
PQ may lead to a ranking which does not really match with the performance of the algorithms in terms of how "useful" they
may be for clinical and research practice.

Results

NuCLS experiments

In Figure 3, we can see the relationship between the distribution of the between-experts IoUs and the object sizes. For smaller
objects, it is much more common to observe smaller IoUs, which do not necessarily correspond to "bad" segmentations, but
rather disagreements or inaccuracies on the exact location of object boundaries, which is unavoidable given the fuzzy nature of
the nuclei contours.
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Figure 3. Distribution of the between-experts IoUs based on the raw "multi-rater" annotations of the NuCLS dataset, in

relation with the object sizes. The orange line is the median, and the boxes show the 1st-3rd quartiles range. The bars show the
minimum-maximum range, excluding outliers.
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Figure 4. Example of four different proposed "good" segmentations (dashed black lines), with their IToU measured against the
ground truth of one of the senior pathologists (solid blue lines) in the NuCLS dataset annotations.

This result is illustrated on a single cell in Figure 4. We show four different segmentations compared to the ground truth
(blue line) available from one of the experts in the dataset. The four segmentations are arguably "as good‘" as the ground truth,
as the exact contours are impossible to determine due to their fuzziness (and compression artefacts). The IoUs, however, are
relatively low, with values of 0.78, 0.63, 0.68 and 0.45, with the latter falling under the 0.5 threshold to be considered a "match"
by the PQ metric.

In Figure 5, the relationship between the IoU and the HD on all overlapping pairs of expert annotations is plotted. Many
pairs with an IoU of around 0.7 or more have an HD that is less than 3px (horizontal line), meaning that no point from one
contour is further apart than 3px (or 0.75 microns) from the other contour. While there is an overall trend of higher HDs
for lower IoUs, it is very flat from an IoU of 0.2, with for instance the whole region with IoUs between 0.3 and 0.5 mostly
corresponding to identical HDs of around 10 (the outliers with HD < 3 and IoU < 0.5 correspond to incorrect annotations that
only contain a few pixels).

MoNuSAC experiments
The four classes of the MoNuSAC dataset have very different area distributions, as evidenced in Figure 6. Lymphocytes are the
smallest (median area = 266px, interquartile range = [221-314px]), followed by neutrophils (546px [468-627px]) and epithelial
nuclei (683px [524-858px]), with macrophages much larger than the three others and with a very wide distribution (1734px
[1032-3152px]).

The effect of the single-pixel erosion, dilation, and vertical shift on the IoU are shown in Figure 7. Three findings emerge
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Figure 5. Relationship between the IoU and the HD for all between-experts overlapping pairs of objects in the NuCLS
multi-rater dataset annotations. The horizontal line indicates a HD of 3px.
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Figure 6. Area distribution based on the classes of the MoNuSAC test set (for boxplot meaning, see Figure 3)

clearly from these distributions. First, the effect of the small perturbation of the border on the IoU is clearly stronger for
the smallest classes. For the lymphocytes, the single pixel erosion leads to a median IoU of 0.80, compared to 0.92 for the
macrophages. Second, even for the comparatively larger macrophages, the resulting "error" on PQ introduced by the uncertainty
on the border is still quite large. An IoU of 0.92 means that the penalty for not perfectly matching the annotator’s exact
borders is the same as for completely missing 8% of the objects of that class. Finally, we can see the effect of the bias towards
"overestimation" of the IoU, as the single pixel dilations have always slightly higher IoUs than the single pixel erosions, with a
more pronounced effect for smaller objects (e.g. for the lymphocytes median IoU of 0.82 for the dilations, compared to 0.80 for
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Figure 7. IoU distribution for the Epithelial (E), Lymphocyte (L), Neutrophil (N) and Macrophage (M) classes after a
single-pixel erosion (e), dilation (d) and vertical shift (s). Outliers in the epithelial cells with IoU < 0.5 are not shown and
correspond to mistakes in the annotations with only small parts of the nuclei being contoured (for boxplot meaning, see
Figure 3).
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Figure 8. Predictions from the four teams (dashed line) on the nucleus of an epithelial cell, with the corresponding IoU
compared to the ground truth segmentation (solid blue).

the erosions).

By looking directly at some results from the MoNuSAC challenge predictions, we can illustrate some of the problems of
the PQ metric on nuclei instance segmentation and classification dataset. Figures 8,9,10, 12 and 11 show the predictions of the
four teams whose detailed results are available from the challenge website on selected examples from each class.

Figure 8 shows the results on an epithelial cell. The predictions from the four teams look very similar. All correspond to
relatively good segmentations of the nucleus, with team 3 and 4 overestimating its size slightly more than team 1 and 2. The
IoUs, however, are very poor, and for team 3 and 4 are actually not be counted as "matches" according to the PQ metric (the
matching rule being "loU < 0.5"). Instead, they will be counted as both a "false positive" and a "false negative", as neither
ground truth object nor predicted object will have a corresponding match. In addition, Figure 9 shows five different predicted
instances from team 4 which are also not counted as “matches” according to the PQ matching rule. These rejections, however,
seem to come mostly from inconsistencies in the annotations themselves. Indeed, for the second and fourth cells, the ground
truth annotation appears to cover the entire cell, while the prediction only segments the nucleus, contrary to what is observed
for the third and the last cells. On the neutrophil example shown in Figure 10, we see again nearly identical segmentations with
a relatively wide range of IoUs. This kind of variations for negligible differences risks masking the impact of "real" errors.

Figure 11 illustrates the problem with the transition between the "panoptic segmentation" task and the "instance segmentation
and classification" task. Team 3 is the only one to detect the nucleus of this macrophage but misclassifies it as an epithelial cell.
In contrast, none of the other teams detect a nucleus at this location. Team 3’s detection results in both a false positive for the
epithelial class, and a false negative for the macrophage class, while the three other teams are only penalized with a macrophage
false negative. In a real PS problem, this could not happen because there is no "background" class and any region in the image
belongs to a class of interest (see Figure 2). Therefore, any false negative is always a false positive of another class.

Finally, the lymphocyte example in Figure 12 illustrates the problem with the IoU’s indifference to shape mismatches. Team
1 and 2 have worse segmentations than team 3 and 4 from a biological point of view, as the irregularity of the segmented shapes
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Figure 9. Several predictions from team 4 (dashed black line) that are not counted as matches on one of the images from the
MOoNuSAC test set, with the corresponding ground truth annotations (solid blue line) and the IoU.
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Figure 10. Predictions from the four teams (dashed line) on the nucleus of a neutrophil, with the corresponding IoU

compared to the ground truth segmentation (solid blue). Black lines are used for correct classifications, white lines for incorrect
classifications.
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Figure 11. Predictions of the four teams (dashed line) on the nuclei of a macrophage, with the corresponding IoU compared
to the ground truth segmentation (solid blue). Black lines are used for correct classifications, white lines for incorrect
classifications.

could hint to a nuclear atypia that is not present. As the irregularity is very localized and occupies a very small area, it does not
penalize the ToU, and both teams actually score a bit better than team 4, which overestimates the size of the nucleus by a few
pixels but keeps the shape intact.
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Team 1: loU = 0.56 Team 2: loU = 0.54 Team 3: loU = 0.57 Team 4: loU = 0.52

Figure 12. Predictions of the four teams (dashed line) on the nuclei of a lymphocyte, with the corresponding IoU compared
to the ground truth segmentation (solid blue).

Conclusions

To summarize, we have established the following problems with the Panoptic Quality metric for cell nuclei instance segmentation
and classification:

a) Because Instance Segmentation and Classification has a background class where the PQ is not computed, the usage of
the per-class F1-score (DQ) as a detection metric is incorrect and leads to a harsher penalty for good detections that are
misclassified than for missed detections.

b) Because nuclei, even at large levels of magnification, are very small objects, the Intersection over Union is a very sensitive
metric to use for segmentation and leads to very poor scores for segmentations which are clearly well within the expected
variability of an expert annotator.

c) Because the IoU is used with a strict 0.5 threshold for the matching rule and as a consequence of b), many correct
detections are missed, leading to an artificially decreased detection score.

d) As the PQ simply multiplies the DQ and the SQ, small variations in the segmentations, which lead to large changes in
SQ, have as much weight on the overall score as missed detections or misclassifications. Ranking algorithms based on
that metric can therefore lead to results that are hard to interpret and may not relate to pathology needs.

It is understandable that researchers seek "catch-all" metrics that allow for a simple ranking of algorithms on complex
tasks. Such metrics, however, are difficult to interpret, and the rankings they produce are difficult to trust. It should be clear by
now that Panoptic Quality is ill-adapted to the particular characteristics of nuclei segmentation and classification. It would be
more advisable to first rank separated detection, classification, and more adapted segmentation metrics (for instance: detection
F1-score on a single "nucleus vs background" class, balanced accuracy or AUROC on the classes of the detected nuclei, HD for
the segmentation). Then, if a single final ranking is needed, a method like the sum of ranks used in the GlaS 2015 challenge'>
can be used.

For the detection of correct matches, matching rules based on the minimum HD or the minimum centroid distance are less
likely to lead to false mismatches. While the 0.5 IoU threshold rule has the advantage of directly providing a unique matching
(i.e. ensuring that it’s impossible for a predicted object to be matched with two different ground truth objects, and vice-versa),
this property can easily be added to other heuristics. For instance, with the minimal centroid distance, the distances between all
candidate matching pairs can first be computed (within a certain tolerance radius), then sorted so that matches are assigned in
order of their closeness, and any other candidate match from either the ground truth or the predicted object are removed from
the candidates list.

We would like to strongly advise challenge organisers and anyone working on nuclei segmentation and classification, to
avoid using the PQ in the future, and to ensure that their choice of metric avoid the many pitfalls that make it so difficult to
trust quantitative results'®>. While the limitations of the IoU mostly impact segmentation tasks that target small objects such as
cell nuclei, the problem of the translation between panoptic segmentation and instance segmentation and classification will
impact any task that includes a "background” or "others" class. In such cases, mixing the "instance detection" and "instance
classification" metrics may be problematic. If the target classes can be grouped into a superclass (such as, for instance, "cell
nuclei" or "glands"), the task can be split into "detection of the superclass" and "classification within the detected instances".
Otherwise, it would generally be more appropriate to analyse per-class results separately.
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